
How to Build a Scalable
Multiplexed Server With NIO

Mark II
Ron Hitchens

Senior Engineer
Mark Logic Corporation

San Carlos, CA
ron.hitchens@marklogic.com

ron@ronsoft.com

mailto:ron.hitchens@marklogic.com
mailto:ron.hitchens@marklogic.com
mailto:ron@ronsoft.com
mailto:ron@ronsoft.com

How to Build a Scalable
Multiplexed Server With NIO

Mark II

Ron Hitchens
Mark Logic Corporation

March 6, 2008
ron.hitchens@marklogic.com

ron@ronsoft.com

http://javanio.info/ Check for updates to these slides

➜

mailto:ron.hitchens@marklogic.com
mailto:ron.hitchens@marklogic.com
mailto:ron.hitchens@marklogic.com
mailto:ron.hitchens@marklogic.com
http://javanio.info
http://javanio.info

3

Architect a scalable, multiplexed Java
Server using the New I/O (NIO) and

Concurrency APIs

4

Ron Hitchens

Years spent hacking UNIX® internals
 Device drivers, I/O streams, etc.

Java NIO published August 2002
Wrote an NIO-based chat server that
manages 1000s of connections 24x7

Been at Mark Logic since 2004
 Lots of XML, XQuery and Java
 technology, not so much NIO lately

Getting Started With XQuery (Pragmatic)

5

Building an NIO Server

Understanding the problem
Defining a solution
An NIO implementation

6

What Does a Server Do?

A server processes requests:
Receive a client request
Perform some request-specific task
Return a response

Multiple requests run concurrently
Client requests correspond to connections

Sequential requests may be sent on a single socket
Requests may contend for resources
Must tolerate slow, misbehaving or
unresponsive clients

7

Multiplexing Strategies

Poll each socket in turn
Impractical without non-blocking sockets
Inefficient, not fair and scales poorly

Thread-per-socket
Only practical solution with blocking sockets
Stresses the thread scheduler, which limits scalability

Thread scheduler does readiness selection—inefficiently

Readiness selection
Efficient, but requires OS and Java VM support
Scales well, especially for many slow clients

8

Other Considerations

Multi-threading issues are magnified
Access controls may become a bottleneck

Non-obvious example: formatting text messages for logging
Potential for deadlocks

Per-thread overhead
Diminishing returns as threads/CPU ratio increases

Quality-of-service policy under load
Define acceptable performance criteria
Define what happens when threshold(s) are reached

Do nothing different, prioritize requests, queue new requests, reject new
requests, redirect to another server, and so on and so on...

Client profile
Ratio of connected clients to running requests
Can (or must) you tolerate malfunctioning or malicious clients?

AKA: Dispatcher, Notifier

9

The Reactor Pattern

Published in Pattern Languages of Program
Design, 1995, ISBN 0-201-6073-4
Paper by Prof. Douglas C. Schmidt *

Google for: Reactor Pattern
Describes the basic elements of a server
Gives us a vocabulary for this discussion

* http://www.cs.wustl.edu/~schmidt/patterns-ace.html

http://www.cs.wustl.edu/~schmidt/patterns-ace.html
http://www.cs.wustl.edu/~schmidt/patterns-ace.html

10

Reactor Pattern UML

11

Reactor Pattern Participants

Handle
A reference to an event source, such as a socket

Event
A state change that can occur on a Handle

Demultiplexer
Reacts to and interprets Events on Handles

Dispatcher
Invokes Handlers for Events on Handles

Handler
Invoked to process an Event on a Handle

12

Dispatcher Flow (Single Threaded)

Register handler(s) for event(s)

...

Do forever

 Ask demultiplexer for current events on registered
handles (may block indefinitely)

 For each current event*

 Invoke handler for event

 Clear the event for the handle

*Events should “latch on” until handled

Dispatch stops
while handler
is running

13

Dispatcher Flow (Multi-Threaded)

Do forever

 Ask demultiplexer for current events on registered handles
(may block indefinitely)

 For each current event

 Ask demultiplexer to stop notification of the event

 Schedule handler for execution

 Clear the event for the handle

<some time later, in some other (handler) thread>

 Tell dispatcher the handler has finished running

 Tell demultiplexer to resume notification of the event

 Synchronize perfectly, don’t clobber or miss anything

This is the
tricky bit

14

A Quick Diversion…

Network connections are streams
If your code assumes structured reads, it’s broken

When reading:
You may only get some (or none) of the data
Structured messages will be fragmented
You must buffer bytes and reconstitute the structure

When writing:
The channel may not accept all you want to send
You must queue output data
Don’t spin in a handler waiting for output to drain

Perhaps it never will

Don’t Forget—The Channels Are Non-Blocking

15

Observations

Handling ready-to-write is just buffer draining
Handlers should enqueue their output
Generic code can drain it

Reads are non-blocking and may fragment
Generic code can fill input queues

Client handlers process “messages”
 Handler decides what constitutes a message

Handler threads interact with the Dispatcher
Dispatcher needs to know when handlers finish
Handler may want to disable reads, unregister, etc.

Yep. Inversion of Control—it’s all the rage
It’s mostly generic, common to any server
Make it once, make it solid, make it reusable

16

Yet Another Framework?

17

Assumptions

Our server will be multi-threaded
Use the java.util.concurrent package (Java SE 5)

One select loop (Dispatcher)
Accepting new sockets is done elsewhere
We only care about input handlers

One input Handler per channel
No handler chains
Input and output processing are not directly coupled

Queuing is done by the framework
Input handlers do not enforce queuing policies

18

Let’s Quickly Review

Selector (Demultiplexer)
Holds a Set of keys representing ready channels

This is the “selected set” of keys
Events are added to but never removed from a key in this set

SelectionKey (Handle)
Associates a Selector with a SelectableChannel
Holds set of events of interest for the channel

Events not in the interest set are ignored
Holds a set of triggered events as-of last select() call

Events persist until key is removed from the selected set
May hold an opaque Object reference for your use

Readiness Selection with NIO

19

Reactor Pattern Mapped to NIO

Handle
SelectionKey

Event
SelectionKey.OP_READ, etc

Demultiplexer
Selector

Dispatcher
Selector.select() + iterate Selector.selectedKeys()

Handler
An instance of Runnable or Callable

20

NIO Reactor UML

dispatch()
registerChannel (ch, handler)
unRegisterChannel (ch)

Dispatcher

select()
selectedKeys()

Selector

call()

Concrete Handler

attachment()

SelectionKey

uses

1

*

notifies

1 1
stores

1 *
spawns

Callable
<<interface>>

call()

*

1

notifies

21

Dispatcher Framework Architecture

Client code registers an InputHandler for a channel
Dispatcher wraps handler in an internal adapter class
Adapter instances manage the channel and its queues

When new data arrives, adapter asks InputHandler to
determine if a full message has arrived
If so, the message is dequeued and passed to the handler
The client handler is passed a ChannelFacade interface
through which it may interact with the channel and/or queues

The client InputHandler is decoupled from NIO and
Dispatcher implementation details
The Dispatcher framework is decoupled from any
semantics of the data it processes

Decouple I/O Grunt Work From the Client Handler Logic

22

NIO Reactor as a Framework

dispatch()
registerChannel (ch, handler)
unRegisterChannel (ch)

Dispatcher

select()
selectedKeys()

Selector

call()

Callable
<<interface>>

call()
inputQueue()
outputQueue()
...

HandlerAdapter
attachment()

SelectionKey

uses

1

*

notfies

1 *
spawns

inputQueue()
outputQueue()
getInterestOps()
...

ChannelFacade
<<interface>>

nextMessage (facade)
handleInput (msg, facade)

InputHandler
<<interface>>

uses

uses
*

1

notifies

1 1
stores

23

An Even Better NIO Framework

dispatch()
registerChannel (ch, handler)
unRegisterChannel (ch)

Dispatcher

select()
selectedKeys()

Selector

call()

Callable
<<interface>>

call()
inputQueue()
outputQueue()
...

HandlerAdapter
attachment()

SelectionKey

uses

1

*

notfies

1 *
spawns

inputQueue()
outputQueue()
getInterestOps()
...

ChannelFacade
<<interface>>

nextMessage (facade)
handleInput (msg, facade)

InputHandler
<<interface>>

uses

uses

*
1

notifies

1 1
stores

done()

HandlerFutureTask

uses

done()

FutureTask

JDK Framework Client Code

24

Dispatcher Interface

public interface Dispatcher

{
 void dispatch() throws IOException;

 ChannelFacade registerChannel (
 SelectableChannel channel,
 InputHandler handler)throws IOException;

 void unregisterChannel (ChannelFacade key);

}

25

Wrangling Threads

java.util.concurrent.Executor
Backport to 1.4 is available

Executor takes a Callable
Callable takes no arguments but has a return type and may
throw exceptions

The framework’s HandlerAdapter class will:
Serve as the Callable that Executor will run
Encapsulate Event state for the worker thread
Coordinate hand-off and rendezvous with the Dispatcher
Contain the input and output queues
Present a Façade through which the InputHandler may
interact with the framework

Don’t Even Think About Writing Your Own Thread Pool

26

Core Dispatcher Loop

public void dispatch()

{

 while (true) {

 selectorGuardBarrier();

 selector.select();

 checkStatusChangeQueue (statusChangeQueue);

 Set<SelectionKey> keys = selector.selectedKeys();

 for (SelectionKey key : keys) {

 HandlerAdapter adapter = (HandlerAdapter)key.attachment();

 invokeHandler (adapter);

 }

 keys.clear();

 }

}

27

Another Quick Diversion…

While a thread is sleeping in select(), many
Selector and SelectionKey methods can block
indefinitely if invoked from a different thread
Use a guard object to handshake
Selection thread grabs then releases the guard
Other threads wishing to change Selector state

Lock the guard object
Wakeup the selector
Do whatever (eg: key.interestOps())
Release the guard lock

The Selector class is kind of cranky about threads

Reader/Writer Lock Barrier

ReadWriteLock: Improvement over synchronized
Worker threads acquire read locks

Multiple may be granted at once
Selection thread acquires write lock

Must wait for all read locks to be released
Lets multiple handler threads complete in one
Selector wakeup cycle

Handler threads hold their lock for a very short time
Re-pooling threads quickly pool improves efficiency

Need to take greater care managing lock state
Locks must be explicitly released

28

Selection Guard Implementation

 import java.util.concurrent.locks.ReadWriteLock;

 private final ReadWriteLock selectorGuard =

 new ReentrantReadWriteLock();

 private void selectorGuardBarrier()

 {

 selectorGuard.writeLock().lock(); // may wait here for readers

 selectorGuard.writeLock().unlock(); // allow readers

 }

 private void acquireSelectorGuard()

 {

 selectorGuard.readLock().lock(); // close Selector barrier

 selector.wakeup(); // wake Selector if sleeping

 }

 private void releaseSelectorGuard()

 {

 selectorGuard.readLock().unlock(); // release my hold on barrier

 }

29

From NioDispatcher.java

30

Registering an InputHandler
public ChannelFacade registerChannel (

SelectableChannel channel, InputHandler handler)
{

 HandlerAdapter adapter = new HandlerAdapter (handler, this,

bufferFactory);

 acquireSelectorGuard();

 try {

 SelectionKey key = channel.register (selector,

SelectionKey.OP_READ, adapter);

 adapter.setKey (key);

 return adapter;

 } finally {

 releaseSelectorGuard();

 }
}

class HandlerAdapter implements Callable<HandlerAdapter>,
ChannelFacade

{ . . . }

31

Unregistering an InputHandler
public void unregisterChannel (ChannelFacade token)
{

 if (! (token instanceof HandlerAdapter)) {

 throw new IllegalArgumentException (”bad registration…");

 }

 HandlerAdapter adapter = (HandlerAdapter) token;

 SelectionKey selectionKey = adapter.key();

 acquireSelectorGuard();

 try {

 selectionKey.cancel();

 } finally {

 releaseSelectorGuard();

 }
}

32

While a Worker Thread Is Running

Channel’s interest ops are all disabled
Handler cannot be allowed to re-enable them

Selector would fire and spawn another handler thread
HandlerAdapter class mediates and buffers changes

Other threads must not change key’s interest ops
Always use ChannelFacade, it buffers if needed

Handler could block if it accesses channel or key
Handler is never passed a real channel or key
Event information is buffered in adapter
Interest op changes are buffered for later

33

Invoking a Handler in Another Thread

private void invokeHandler (HandlerAdapter adapter)

{

 adapter.prepareToRun (key);

 adapter.key().interestOps (0); // stop selection on channel

 executor.execute (new HandlerFutureTask (adapter));

}

More about
this shortly

34

Preparing a Handler to Run

class HandlerAdapter implements Callable<HandlerAdapter>,
ChannelFacade

{
private volatile boolean running = false;
private final Object stateChangeLock = new Object();

 . . .

void prepareToRun() // package local
{

synchronized (stateChangeLock) {
interestOps = key.interestOps();
readyOps = key.readyOps();
running = true;

}
}

35

Handler Thread Life-Cycle
public HandlerAdapter call() throws IOException

{

 try {

 drainOutput();

 fillInput();

 ByteBuffer msg;

 while ((msg = clientHandler.nextMessage (this)) != null) {

 clientHandler.handleInput (msg, this);

 }

 } finally {

 synchronized (stateChangeLock) { running = false; }

 }

 return this;

}

36

First: Manage The Queues
private void drainOutput() throws IOException

{

 if (((readyOps & SelectionKey.OP_WRITE) != 0)

 && (! outputQueue.isEmpty()))

 {

 outputQueue.drainTo ((ByteChannel) channel);

 }

 if (outputQueue.isEmpty()) {

 disableWriteSelection();

 if (shuttingDown) { // set by fillInput on EOS

 channel.close();

 }

 }

}

Similar logic for
fillInput(),
see example code

37

Second: Invoke Client InputHandler
public HandlerAdapter call() throws IOException

{

 try {

 drainOutput();

 fillInput();

 ByteBuffer msg;

 while ((msg = clientHandler.nextMessage (this)) != null) {

 clientHandler.handleInput (msg, this);

 }

 } finally {

 synchronized (stateChangeLock) { running = false; }

 }

 return this;

}

38

A Handler’s View of the World
interface InputHandler

{

 ByteBuffer nextMessage (ChannelFacade channelFacade);

 void handleInput (ByteBuffer message, ChannelFacade

 channelFacade);

}

interface ChannelFacade

{

 InputQueue inputQueue();

 OutputQueue outputQueue();

 void setHandler (InputHandler handler);

 int getInterestOps();

 void modifyInterestOps (int opsToSet, int opsToReset);

}

Handler Is Wrapped In FutureTask

Overrides done() method
Called after return from call() in HandlerAdapter
Appends itself to a BlockingQueue
Wakes the selection thread
Worker thread returns to the Executor pool

Selection thread drains the queue each time around
For each queued HandlerAdapter

If the connection has terminated, unregister handler
Otherwise, the interest set is updated with the new value
buffered in the adapter object

39

java.util.concurrent.FutureTask

HandlerFutureTask Class
private class HandlerFutureTask extends FutureTask<HandlerAdapter>

{

 private final HandlerAdapter adapter; // Stored by constructor

 protected void done()

 {

 enqueueStatusChange (adapter); // notify selection thread

 try {

 get(); // Get result or throw deferred exception

 } catch (ExecutionException e) {

 adapter.die(); // selection thread will drop it

 }

 }

}
40

Finally: Reap Completed Handlers

public void dispatch()

{

 while (true) {

 selectorGuardBarrier();

 selector.select();

 checkStatusChangeQueue();

 Set<SelectionKey> keys = selector.selectedKeys();

 for (SelectionKey key : keys) {

 HandlerAdapter adapter = (HandlerAdapter)key.attachment();

 invokeHandler (adapter);

 }

 keys.clear();

 }

}

41

Cleanup Completed Handlers
private void checkStatusChangeQueue()

{

 HandlerAdapter adapter;

 while ((adapter = statusChangeQueue.poll()) != null) {

 if (adapter.isDead())

 unregisterChannel (adapter);

 else

 resumeSelection (adapter);

 }

}

private void resumeSelection (HandlerAdapter adapter)

{

 SelectionKey key = adapter.key();

 if (key.isValid()) key.interestOps (adapter.getInterestOps());

}
42

Running in the
selection thread,
no need for the
guard lock

43

A Few Words About Queues

The framework need only see trivial interfaces
Handlers will need more, and perhaps
specialized, API methods
Use Abstract Factory or Builder pattern to
decouple queue creation (dependency injection)
Output queues (usually) must be thread-safe

A handler for one channel may want to add data to
a different channels queue

Input queues usually don’t need to be
Buffer factories need to be thread-safe

44

Basic Queue Interfaces
interface InputQueue
{

int fillFrom (ReadableByteChannel channel);
boolean isEmpty();
int indexOf (byte b);
ByteBuffer dequeueBytes (int count);
void discardBytes (int count);

}

interface OutputQueue
{
 boolean isEmpty();

int drainTo (WriteableByteChannel channel);
boolean enqueue (ByteBuffer byteBuffer);

 // enqueue() is not referenced by the framework, but
 // it must enable write selection when data is queued
 // write selection is disabled when the queue becomes empty
}

Only methods in
blue are used by
the framework

45

Trivial Echo-Back Handler Example

public ByteBuffer nextMessage (ChannelFacade channelFacade)

{

 InputQueue inputQueue = channelFacade.inputQueue();

 int nlPos = inputQueue.indexOf ((byte) '\n');

 if (nlPos == -1) return (null);

 return (inputQueue.dequeueBytes (nlPos));

}

public void handleInput (ByteBuffer message, ChannelFacade channelFacade)

{

 channelFacade.outputQueue().enqueue (message);

}

Implementation of InputHandler

46

Less Trivial Chat Server Example
public ByteBuffer nextMessage (ChannelFacade channelFacade)

{

 InputQueue inputQueue = channelFacade.inputQueue();

 int nlPos = inputQueue.indexOf ((byte) '\n');

 if (nlPos == -1) return null;

 if ((nlPos == 1) && (inputQueue.indexOf ((byte) '\r') == 0)) {

 inputQueue.discardBytes (2);
 // eat CR/NL by itself

 return null;

 }

 return (inputQueue.dequeueBytes (nlPos + 1));

}

public void handleInput (ByteBuffer message, ChannelFacade facade)

{

 protocol.handleMessage (channelFacade, message);

}

47

Chat Server Continued

public void handleMessage (ChannelFacade facade, ByteBuffer message)

{

 broadcast (users.get (facade), message);

}

private void broadcast (NadaUser sender, ByteBuffer message)

{

 synchronized (users) {

 for (NadaUser user : users.values()) {

 if (user != sender) {

 sender.sendTo (user, message);

 }

 }

 }

}

48

Danger! Danger, Will Robinson!

Never let the Dispatcher thread die
Everything will go very quiet
Be sure to catch and handle all possible throwables

This is done by the HandlerFutureTask class
Beware Executor thread pool policies

If “caller runs” is enabled, the Dispatcher thread can
execute the handler code—that’s not good

Put sensible limits on queue sizes
Not too small, especially for output
Don’t statically allocate per-channel, use factories
Don’t over-use direct buffers

49

Tuning

Too big a subject to cover here
Use the knobs and levers in java.util.concurrent

Optimal thread count is dependent on CPU/core count
Backlog vs. caller runs vs. discard, etc.

Use buffer factories to obtain space for queues
Pool direct buffers, if used, they’re expensive to create
Heap buffers probably shouldn’t be pooled

Limit policies may be different for input vs. output
queues

Output limits are typically higher
Input limits can be small, the network layer queues too

50

A Picture Is Worth…

dispatch()
registerChannel (ch, handler)
unRegisterChannel (ch)

Dispatcher

select()
selectedKeys()

Selector

call()

Callable
<<interface>>

call()
inputQueue()
outputQueue()
...

HandlerAdapter
attachment()

SelectionKey

uses

1

*

notfies

1 *
spawns

inputQueue()
outputQueue()
getInterestOps()
...

ChannelFacade
<<interface>>

nextMessage (facade)
handleInput (msg, facade)

InputHandler
<<interface>>

uses

uses

*
1

notifies

1 1
stores

done()

HandlerFutureTask

uses

done()

FutureTask

JDK Framework Client Code

51

Summary

The core of the problem is generic boilerplate
Decouple application-specific code from generic
Keep the critical parts lean, efficient and robust

Lock appropriately, but sparingly
Delegate work to handler threads
Protect the framework from alien handler code

Use good object design and leverage patterns
Keep it simple

52

For More Information

Code and Information
http://javanio.info

Books
Java NIO, Ron Hitchens (O’Reilly)
Java Concurrency In Practice, Brian Goetz, et al (AW)
Concurrent Programming in Java, Doug Lea (AW)

http://javanio.info
http://javanio.info

Q&A

Ron Hitchens
ron@ronsoft.com

http://javanio.info/

mailto:ron@ronsoft.com
mailto:ron@ronsoft.com
http://javanio.info
http://javanio.info

How to Build a Scalable
Multiplexed Server With NIO

Mark II
Ron Hitchens

Senior Engineer
Mark Logic Corporation

San Carlos, CA
ron.hitchens@marklogic.com

ron@ronsoft.com

mailto:ron.hitchens@marklogic.com
mailto:ron.hitchens@marklogic.com
mailto:ron@ronsoft.com
mailto:ron@ronsoft.com

